GIS-OPTIMISED BIN LOCATIONS ON KNUST CAMPUS

AfricaGIS 2025

By:

Vanessa Naa Dedei Nyarkoa Solomon

AfricaGIS 2025 and UN-GGIM: Africa XI Joint Conference

Harnessing Geospatial Intelligence for Africa's Sustainable and Resilient Future

17-21 November 2025, Alisa Hotel, Accra, Ghana

Presentation Outline

- Background Information
- Research Aim and Objectives
- Study Area
- Project Methodology
- Results and Discussion
- *Conclusions
- Recommendations

Background Information_{1/2}

- Managing solid waste on university campuses is a complex and vital component of sustainability initiatives.
- Universities like, mini-cities, face increasing waste challenges due to the growing student and staff populations.

By leveraging GIS, we can strategically optimize the placement of waste bins to ensure proper coverage and accessibility.

Background Information_{2/2}

Problem Statement

- Current waste management practices rely on traditional methods that lack real-time data monitoring, predictive analytics, and optimization techniques.
- A key limitation of the existing system is the lack of a GISenabled waste tracking, sensor-based monitoring, and route optimization.
- The absence of spatial intelligence in bin allocation and collection operations leads to inefficient resource utilization, and a higher fuel consumption.

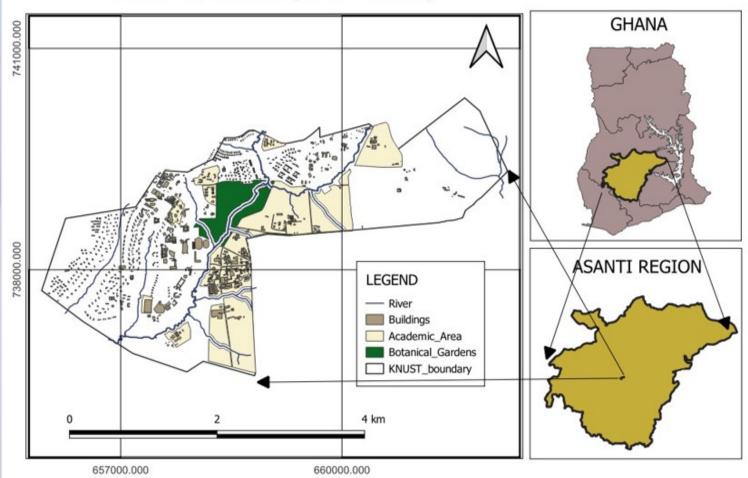
Research Aim and Objectives

The research aims to enhance waste management practices on the KNUST campus using GIS.

Specific Objectives (SO)	Questions	Approaches
1. To determine existing bin location and collection routes.	1. How are the existing bin locations and collection routes currently distributed on campus?	 Data Collection of existing bins Review of existing routes Data Integration
2. To suggest optimal collection routes and bin locations.	1. How can a GIS-based approach be utilized to optimize bin locations and collection routes to enhance waste management?	 Spatial Analysis Optimization of bin locations Route Optimization Performance Analysis

Study Area

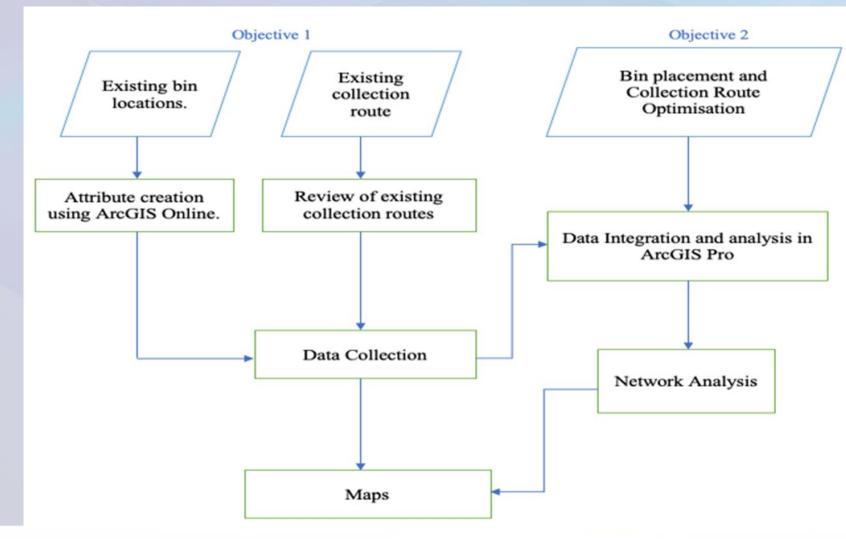
- Located in the Oforikrom Municipality, Ashanti Region, Ghana
- ☐ Covers approximately 18 km² in an urban setting
- □ Bordered by Ayigya, Bomso, Ayeduase, Kotei, andGyenyaase
- ☐ Functions like a **micro-city** with diverse land uses
- ☐ Divided into three main zones:


Faculty area – Six colleges

Residential area - Student hostels & staff

housing

Commercial area – Shops and activity centers

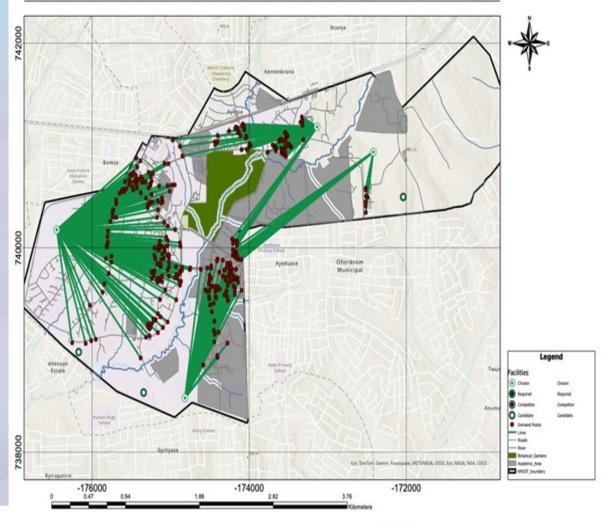

A MAP OF KNUST (STUDY AREA)

Project Methodology

GIS APPLICATIONS USED:

- ArcGIS Online
- ESRI's field map mobile app
- ArcGIS Pro

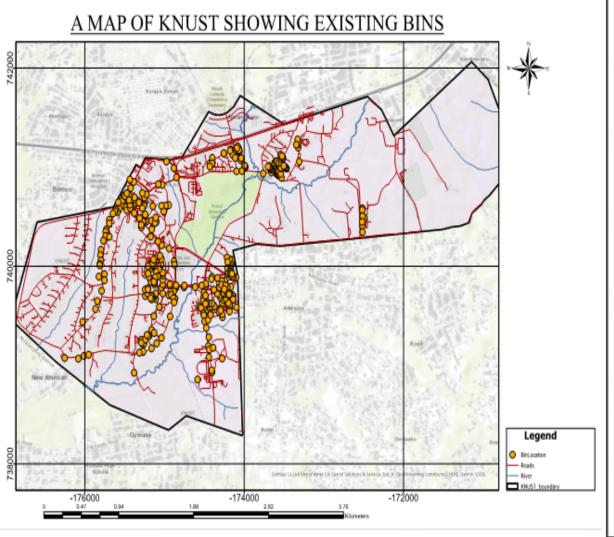
Results and Discussion,

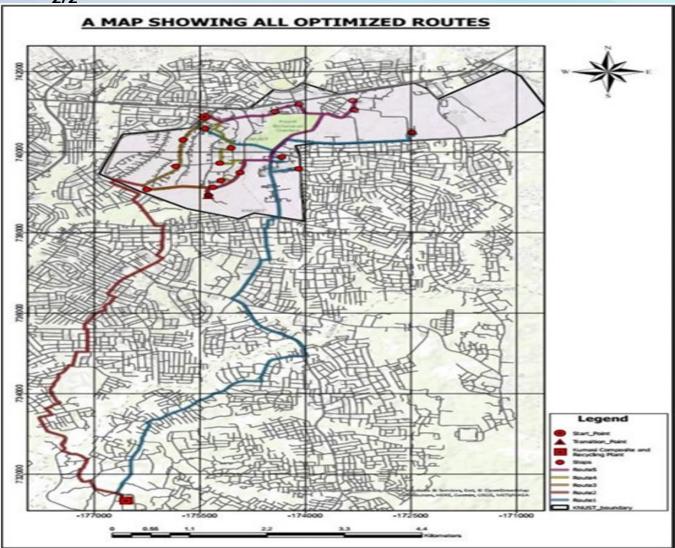

Bin Optimization

- ✓ Conscious efforts has been made to evenly distribute bins on campus.
- ✓ However, the analysis reveals notable gaps in coverage.
- ✓ Transfer stations selected based on road access and environmental safety.

Route Optimization

- ✓ Current routes rely on drivers' judgment.
- ✓ Optimized route reduction in distance from 13.02km to 12.1km.


A MAP OF KNUST SHOWING BIN LOCATION ALLOCATION TO TRANSFER SITES



Results and Discussion 2/2

Conclusion

- **SMART** WASTE MANAGEMENT
 - GIS-optimized bin placement improves cleanliness and service delivery through data driven planning.
- Peal-time monitoring and spatial intelligence (example; Use of dashboards) strengthen efficiency and support smart city operations.
- SCALABLE IMPACT FOR AFRICAN CITIES

 This research offers a scalable, low-cost framework that can guide smarter waste management planning in African cities.

Recommendations

PILOT THE FRAMEWORK IN URBAN COMMUNITIES

Stakeholders can test this approach in selected communities to assess practicality and user response

2 ASSESS SMART CITY INTEGRATION

Analyze how this research can support scalable waste management planning within African smart city initiatives.

THANK YOU!

Researchers:

Vanessa Naa Dedei Nyarkoa Solomon & Justice Kwaku Torsukpe

Supervisor:

Prof. Jonathan Arthur Quaye-Ballard

AfricaGIS 2025 and UN-GGIM: Africa XI Joint Conference

References

- Desa, A., Abd Kadir, N. B., & Yusooff, F. (2012). Environmental Awareness and Education: A Key Approach to Solid Waste Management (SWM) A Case Study of a University in Malaysia. In Waste Management An Integrated Vision. InTech. https://doi.org/10.5772/48169
- Gounder, J., Caunder, R., Baikerikar, S., & Chopra, S. (n.d.). Waste Segregation using Smart bin and Optimization of Collection Routes. https://ssrn.com/abstract=3759985
- □ Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. In Critical Reviews in Environmental Science and Technology (Vol. 42, Issue 15, pp. 1509–1630). https://doi.org/10.1080/10643389.2011.569871
- Rossit, D. G., & Nesmachnow, S. (2022). Waste bins location problem: A review of recent advances in the storage stage of the Municipal Solid Waste reverse logistic chain. In Journal of Cleaner Production (Vol. 342). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2022.130793
- □ Shi, W., Jiang, Q., Zhang, M., & Yuchi, Q. (2021). An Optimization Problem and Method for Bin Location in Urban Areas.
- Sinuraya, E. W., Soetrisno, Y. A. A., Setianingrum, A. P., & Sari, T. W. I. P. (2022). Realtime Monitoring System Towards Waste Generation Management. Proceeding ELTICOM 2022: 6th International Conference on Electrical, Telecommunication and Computer Engineering 2022, 172–177. https://doi.org/10.1109/ELTICOM57747.2022.10038115
- Sulemana, A., Donkor, E. A., Forkuo, E. K., Asantewaa, J., Ankrah, I. N. A., & Musah, A. M. O. (2020). Optimized routing of trucks for institutional solid waste collection in Kumasi, Ghana. Detritus, 9(March), 50–58. https://doi.org/10.31025/2611-4135/2020.13896

