Monitoring Land Degradation Neutrality in the Birim North Mining Community of Ghana

AfricaGIS 2025

Presenter: Aaron Tettey Tetteh

Authors Name: Aaron Tettey Tetteh, Lily Lisa Yevugah, Abdul-Wadood Moomen

Institution: University of Energy and Natural Resources (UENR), Ghana

Date: December 2, 2025

AfricaGIS 2025 and UN-GGIM: Africa XI Joint Conference

Harnessing Geospatial Intelligence for Africa's Sustainable and Resilient Future

17-21 November 2025, Alisa Hotel, Accra, Ghana

PRESENTATION OUTLINE

- Introduction
- Significance of study
- Aim & Specific Objectives
- Methodology
- Results and Discussion
- Conclusion and Recommendations
- Acknowledgement

INTRODUCTION

- Land Degradation (LD) is the reduction in biodiversity and ecosystem functioning, impacting ecosystem services (IPBES, 2018; Petrosillo et al. 2023).
- LD has compromised the land's ability to fulfill its functions.
- LD causes \$400 billion in losses annually, impacting 1.5 billion people worldwide (Jiang et al., 2022; Uthappa et al., 2023; Anteneh & Zewide, 2021).
- The UNCCD seeks to combat LD through advocating Land Degradation Neutrality (LDN).

INTRODUCTION

- LDN aim to reverse, reduce, and restore degraded lands by the year 2030 (Cowie, 2020).
- Land is humanity's most valuable resource, forming the foundation for all other resources.
- Monitoring LDN and its drivers aid decision-making (Hannam, 2022; Jiang et al., 2022).
- Ghana targets rehabilitation of degraded mine sites and 882.86 km² of forest by 2030 (UNCCD,2017). This study will monitor progress towards LDN in the Birim North Mining Community.
- The study monitors progress towards LDN in the Birim North Mining Community.

SIGNIFICANCE OF STUDY

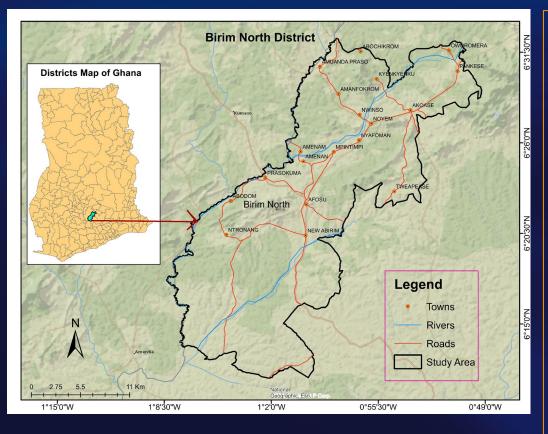
- The study provides the baseline for assessment of LD for policymakers and stakeholders,
 - facilitating informed decision-making and sustainable land management practices;
- It provides status of LDN in mining communities;
- It offers tailored solutions to improve livelihood of residents in mining communities.

AIM & SPECIFIC OBJECTIVES

SPECIFIC OBJECTIVES:

This study aims to monitor and assess

LDN in the Birim


North mining

community.

- To map the extent of land degradation in the Birim North district.
- To assess evidence of rehabilitation efforts; and analyze the perception of mining communities on rehabilitation activities.
- To examine the drivers influencing the achievement of Land
 Degradation Neutrality
- To examine the sustainability of rehabilitation methods used.

METHOD: STUDY AREA

Study Area

- Climate: Semi-equatorial, double rainfall peaks (1,500–2,000 mm), warm temps (25–28 °C); supports cocoa & oil palm.
- Geology: Gold-rich Birimian & Tarkwaian rocks; driving mining.
- Vegetation: Semi-deciduous forest rapidly declining due to mining and farming.
- Relief: Mountainous (112–497 m), drained by Pra & Birim Rivers.
- **Population:** 82,669 people; livelihoods rely on farming and mining.

MATERIALS & SOFTWARE

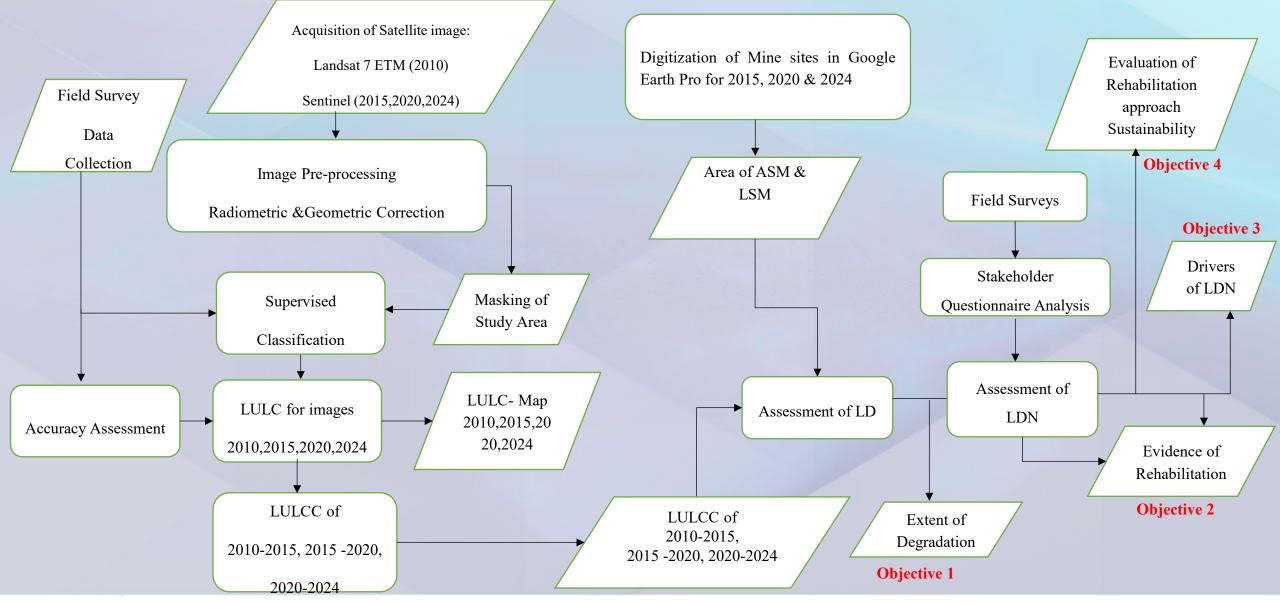
Data Sources

Landsat imagery 7 ETM+ for the year

2010 from USGS.

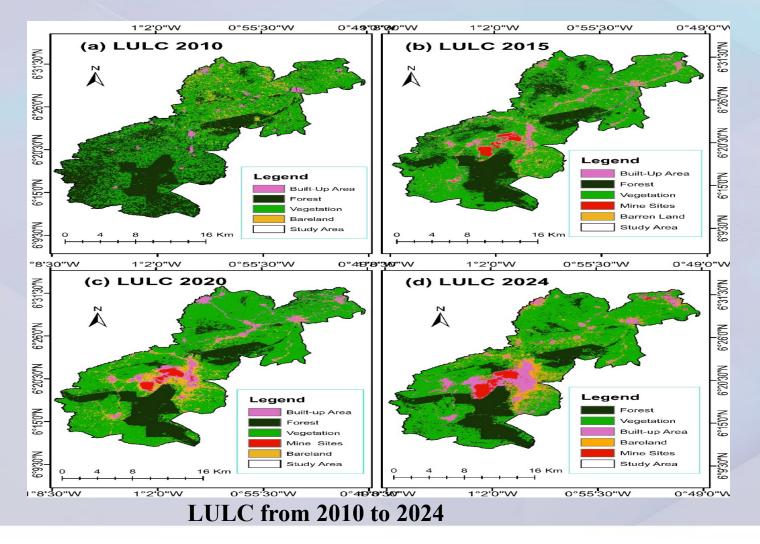
Sentinel imagery for the years 2015,

2020, & 2024 from Copernicus.


• Field Surveys.

Stakeholder Interviews.

Software	Purpose			
ArcGIS 10.8	Mapping and GIS Analysis			
QGIS 3.28	Mapping and GIS Analysis			
Google Earth	Time-series analysis and Classification			
Pro	validation, and Mine sites digitization.			
MS Excel	LULCC analysis and graphs, and			
	questionnaire analysis.			

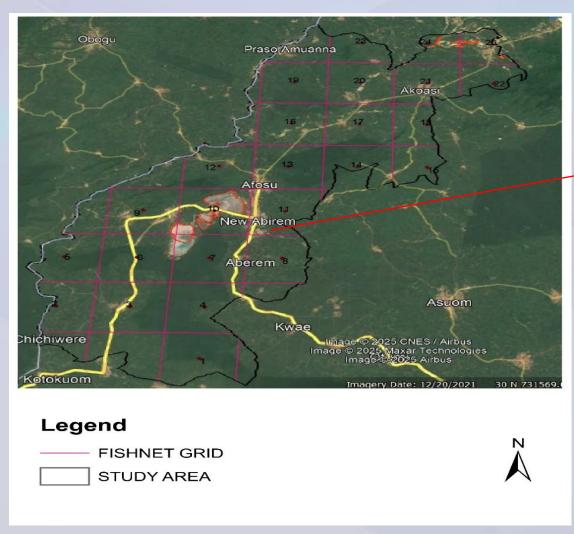


Flowchart of the methodological framework used

LULC Changes from 2010 to 2024

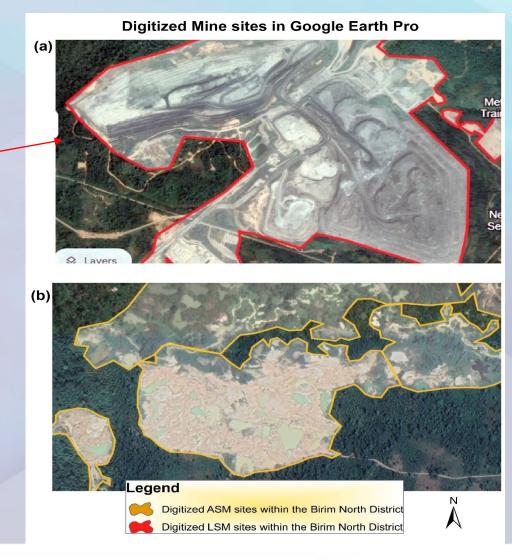
Class name	Area in 2010 (km²)	Area in 2024 (km²)	% change (2010 - 2024)
Forest	235.35	117.15	-50.22
Vegetation	288.47	341.47	18.37
Built-Up area	13.34	51.92	289.21
Bare land	29.84	42.73	43.20
Mine sites	-	13.73	_
Total	567.00	567	

LULC Transition Matrix from 2010 to 2024 (km2).


Mine Sites 2010 \ 2024 **Forest** Vegetation **Built-up area Bare land** Total (2010) **Forest** 92.461 111.829 15.872 10.978 4.217 235.357 Vegetation 22.212 205.009 25.346 26.804 9.087 288,459 1.561 13.346 **Built-up** 0.118 2.405 9.059 0.202 area 2.358 1.643 3.391 0.220 29.838 **Bare land** 22.227 Total (2024) 117.149 341.469 51.920 42.735 13.726 567

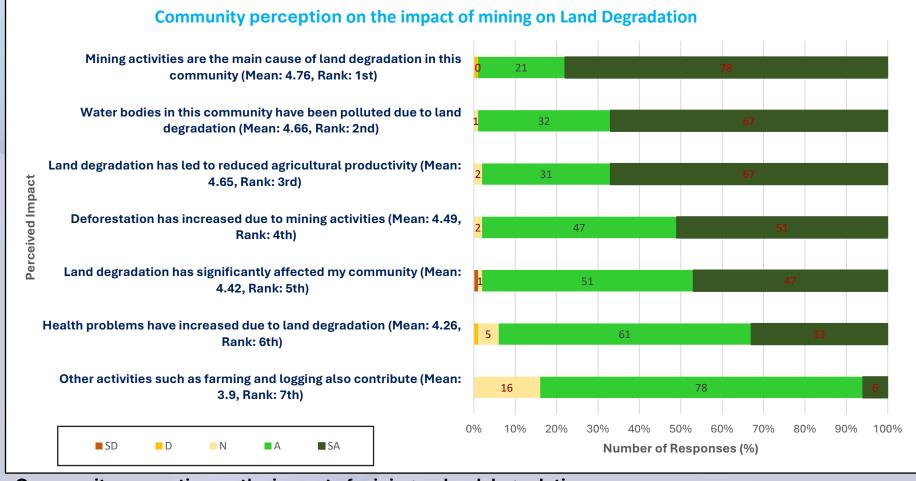
Accuracy- Assessment of LULC for 2010-2024

Year	Overall Accuracy (%)	Kappa Coefficient	
2010	86.6	0.854225	
2015	93.8	0.911259	
2020	94.1	0.933625	
2024	88.2	0.858665	



Map showing the fishnet griding of the study area used as a guide for ease of digitizing ASM and LSM sites in Google Earth Pro.

AfricaGIS 2025 and UN-GGIM: Africa XI Joint Conference

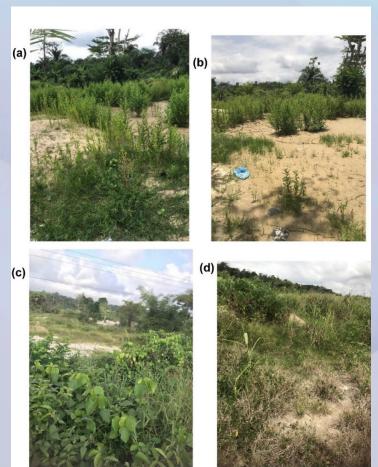

Digitized Mine sites within the study area (km²).

Year / Time Period	ASM Site Area (m²)	ASM Site Area (km²)	LSM Site Area (m²)	LSM Site Area (km²)	ASM Change (%)	LSM Change (%)
2015	1,452,563.50	1.4526	8,212,659	8.2127	_	_
2020	1,225,082.00	1.2251	9,129,594	9.1296	-15.67	+11.17
2024	3,301,555.08	3.3016	11,279,772	11.2798	+169.50	+23.56
2015–2024	_	_	_	_	+127.30	+37.34

- Mining Surge ASM and LSM are main contributors to forest loss, bare land expansion, and soil degradation.
- Urbanization &

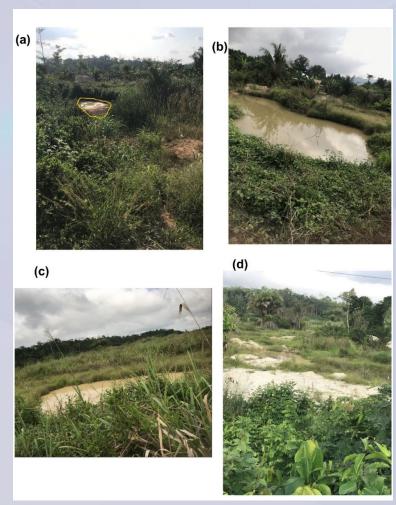
 Deforestation Expanding settlements and tree loss intensify land degradation (Table 3).

Community perception on the impact of mining on land degradation.


SA = Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD = Strongly Disagree. Longer dark green segments reflect stronger agreement.

Objective 2: Evidence of Rehabilitation Efforts in the study area and the perception of mining communities on restoration activities

- Natural Regeneration was the rehabilitation technique observed.
- Water and vegetation-covered pits pose health and safety risks.
- Some Abandoned pits are remined by locals.


Re-mining of old abandoned pits observed in the study area.

Natural regeneration at an abandoned ASM site

Objective 2: CONT'D

Water-filled pits at a naturally regenerated ASM site, vegetation surrounding the flooded areas.

RESULTS & DISCUSSION

Community perception on Rehabilitation efforts and its effectiveness

Mining companies and ASM have a responsibility to rehabilitate lands after extraction (Mean: 4.49, Rank: 1st)

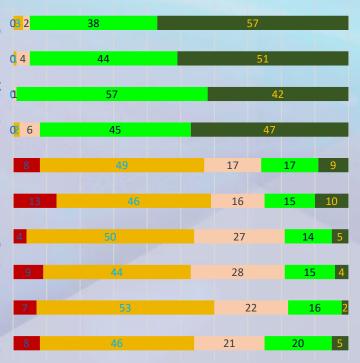
Filling abandoned mine pits is necessary for land

Filling abandoned mine pits is necessary for land rehabilitation (Mean: 4.45, Rank: 2nd)

Tree planting is an effective method for rehabilitating degraded land (Mean: 4.41, Rank: 3rd)

There are laws in place that require ASM operators to rehabilitate degraded lands (Mean: 4.37, Rank: 4th)

Rehabilitation efforts have significantly improved land conditions in this community (Mean: 2.7, Rank: 5th)


The enforcement of rehabilitation policies for ASM activities is effective (Mean: 2.68, Rank: 6th)

Local community members participate in land rehabilitation activities (Mean: 2.66, Rank: 7th)

Mine pits are filled with soil after mining in this community (Mean: 2.61, Rank: 8th)

Government agencies are actively involved in land rehabilitation efforts (Mean: 2.53, Rank: 9th)

I am aware of rehabilitation efforts aimed at restoring degraded land in this community (Mean: 2.63, Rank: 10th)

Rehabilitation Efforts

Community perception of the effectiveness of land rehabilitation efforts.

SA = Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD = Strongly Disagree. Longer dark green segments reflect stronger agreement.

Objective 4:Drivers Influencing the Achievement of Land Degradation Neutrality

Enabling Drivers (Opportunities):

- Natural vegetation regeneration observed on abandoned mine sites.
- Strong community willingness to engage in rehabilitation.
- Training and awareness creation identified by 39% of respondents.
- Collaborative interventions proposed: 56% joint training, 17% – law enforcement, 6% – education & taskforces, 3% – alternative livelihoods.

Constraining Drivers (Challenges):

- Weak enforcement of environmental regulations.
- Limited institutional & technical capacity for rehabilitation.
- Inadequate funding and poor disbursement.
- Low LDN policy awareness (72% unaware).
- Competing land uses (re-excavation, farm-to-ASM conversion).
- Rapid ASM expansion (+169.5% from 2020–2024)
 undermines neutrality.

Objective 4: Evaluating the Sustainability of Rehabilitation Practices

- Natural Regeneration alone is insufficient Passive recovery fails to fully restore ecosystems.
- No other structured methods Reforestation, phytoremediation, soil restoration required.
- Capacity Gaps Limited expertise, and resources hinder rehabilitation.
- Community Support Strong backing for training, involvement, and inclusive decision-making.
- Policy & Enforcement Gaps High demand for stricter laws and mandatory post-mining rehabilitation.

CONCLUSION

- Severe land degradation due to loss of forest and rise in built-up and bare lands.
- Mining (illegal ASM) and urbanization are the dominant drivers of degradation.
- Rehabilitation efforts largely relied on natural regeneration.
- Weak enforcement and limited expertise hinder progress toward LDN.
- Current rehabilitation methods are unsustainable and require structured interventions.

RECOMMENDATION

- Implement reforestation and land restoration programmes to curb severe degradation.
- Enforce sustainable mining and land management practices.
- Shift from passive to active rehabilitation through pit refilling, phytoremediation, and afforestation.
- Enhance law enforcement and technical capacity to advance LDN progress.
- · Foster collaboration and provide livelihood support for sustainable rehabilitation.

ACKNOWLEDGEMENT

- GEO-LDN International Postgraduate Scholarship
- Local Coordinator, GEO-LDN Secretariat
- Department of Land Management, UENR
- School of Mines and Built Environment, UENR

Thank You!

Aaron Tettey Tetteh

aaron.tetteh.stu@uenr.edu.gh

LinkedIn: www.linkedin.com/in/aaron-tettey-tetteh-aaa105186